The presentation of a new type of quantum calculus

Abdolali Neamaty ${ }^{a *}$ and Mehdi Tourani ${ }^{b}$
Department of Mathematics, University of Mazandaran, Babolsar, Iran
E-mail: namaty@umz.ac.ir ${ }^{a}$, mehdi.tourani1@gmail.com ${ }^{b}$

Abstract

In this paper we introduce a new type of quantum calculus, the p-calculus involving two concepts of p-derivative and p-integral. After familiarity with them some results are given.

2010 Mathematics Subject Classification. 05A30. 34A25
Keywords. p-derivative, p-antiderivative, p-integral.

1 Introduction

Simply put, quantum calculus is ordinary calculus without taking limit. In ordinary calculus, the derivative of a function $f(x)$ is defined as $f^{\prime}(x)=\lim _{y \rightarrow x} \frac{f(y)-f(x)}{y-x}$. However, if we avoid taking the limit and also take $y=x^{p}$, where p is a fixed number different from 1 , i.e., by considering the following expression:

$$
\begin{equation*}
\frac{f\left(x^{p}\right)-f(x)}{x^{p}-x}, \tag{1.1}
\end{equation*}
$$

then, we create a new type of quantum calculus, the p-calculus, and the corresponding express is the definition of the p-derivative. The formula (1.1) and several of the results derived from it which will be mentioned in the next sections, appear to be new. In [8] the authors developed two types of quantum calculus, the q-calculus and the h-calculus. If in the definition of $f^{\prime}(x)$, as has been stated above, we do not take limit and also take $y=q x$ or $y=x+h$, where q is a fixed number different from 1, and h a fixed number different from 0 , the q-derivative and the h-derivative of $f(x)$ are defined. For more details, we refer the readers to $[1,2,4,7]$. Generally, in the last decades the q-calculus has developed into an interdisciplinary subject, which is briefly discussed in chapters 3 and 7 of [3] and also has interesting applications in various sciences such as physics, chemistry, etc $[5,6]$. A history of the q-calculus was given by T.Ernst [3].

The purpose of this paper is to introduce another type of quantum calculus, the p-calculus, also we're going to give some results by it. The paper has been organized as follows. In section 2, we define the p-derivative, also some of its properties will be expressed. In section 3, we introduce the p-integral, including a sufficient condition for its convergence is given. In section 4 , we will define the definite p-integral, followed by the definition of the improper p-integral. Finally, we will conclude our discussion by fundamental theorem of p-calculus.

2 p-Derivative

Throughout this section, we assume that p is a fixed number different from 1 and domain of function $f(x)$ is $[0,+\infty)$.

[^0]Definition 2.1. Let $f(x)$ be an arbitrary function. We define its p-differential to be

$$
d_{p} f(x)=f\left(x^{p}\right)-f(x)
$$

In particular, $d_{p} x=x^{p}-x$. By the p-differential we can define p-derivative of a function.
Definition 2.2. Let $f(x)$ be an arbitrary function. We define its p-derivative to be

$$
D_{p} f(x)=\frac{f\left(x^{p}\right)-f(x)}{x^{p}-x}, \quad i f x \neq 0,1
$$

and

$$
D_{p} f(0)=\lim _{x \rightarrow 0^{+}} D_{p} f(x), \quad \quad D_{p} f(1)=\lim _{x \rightarrow 1} D_{p} f(x)
$$

Remark 2.3. If $f(x)$ is differentiable, then $\lim _{p \rightarrow 1} D_{p} f(x)=f^{\prime}(x)$, and also if $f^{\prime}(x)$ exists in a neighborhood of $x=0, x=1$ and is continuous at $x=0$ and $x=1$, then we have

$$
D_{p} f(0)=f_{+}^{\prime}(0), \quad D_{p} f(1)=f^{\prime}(1)
$$

Definition 2.4. The p-derivative of higher order of function f is defined by

$$
\left(D_{p}^{0} f\right)(x)=f(x), \quad\left(D_{p}^{n} f\right)(x)=D_{p}\left(D_{p}^{n-1} f\right)(x), n \in N
$$

Example 2.5. Let $f(x)=c, g(x)=x^{n}$ and $h(x)=\ln (x)$ where c is constant and $n \in N$. Then we have
(i) $D_{p} f(x)=0$,
(ii) $D_{p} g(x)=\frac{g\left(x^{p}\right)-g(x)}{x^{p}-x}=\frac{x^{p n}-x^{n}}{x^{p}-x}=\frac{x^{(p-1) n}-1}{x^{p-1}-1} x^{n-1}$,
(iii) $D_{p} h(x)=\frac{h\left(x^{p}\right)-h(x)}{x^{p}-x}=\frac{(p-1) \ln (x)}{x^{p}-x}=\frac{(p-1) \ln (x)}{x^{p-1}-1} \frac{1}{x}$.

Notice that the p-derivative is a linear operator, i.e., for any constants a and b, and arbitrary functions $f(x)$ and $g(x)$, we have

$$
D_{p}(a f(x)+b g(x))=a D_{p} f(x)+b D_{p} g(x) .
$$

We want now to compute the p-derivative of the product and the quotient of $f(x)$ and $g(x)$.

$$
\begin{aligned}
D_{p}(f(x) g(x)) & =\frac{f\left(x^{p}\right) g\left(x^{p}\right)-f(x) g(x)}{x^{p}-x} \\
& =\frac{f\left(x^{p}\right) g\left(x^{p}\right)-f(x) g\left(x^{p}\right)+f(x) g\left(x^{p}\right)-f(x) g(x)}{x^{p}-x} \\
& =\frac{\left(f\left(x^{p}\right)-f(x)\right) g\left(x^{p}\right)+f(x)\left(g\left(x^{p}\right)-g(x)\right)}{x^{p}-x} .
\end{aligned}
$$

Thus

$$
\begin{equation*}
D_{p}(f(x) g(x))=g\left(x^{p}\right) D_{p} f(x)+f(x) D_{p} g(x) \tag{2.1}
\end{equation*}
$$

Similarly, we can interchange f and g, and obtain

$$
\begin{equation*}
D_{p}(f(x) g(x))=g(x) D_{p} f(x)+f\left(x^{p}\right) D_{p} g(x), \tag{2.2}
\end{equation*}
$$

which both of (2.1) and (2.2) are valid and equivalent. Here let us prove quotient rule. By changing $f(x)$ to $\frac{f(x)}{g(x)}$ in (2.1), we have

$$
D_{p} f(x)=D_{p}\left(\frac{f(x)}{g(x)} g(x)\right)=g\left(x^{p}\right) D_{p}\left(\frac{f(x)}{g(x)}\right)+\frac{f(x)}{g(x)} D_{p} g(x)
$$

and thus

$$
\begin{equation*}
D_{p}\left(\frac{f(x)}{g(x)}\right)=\frac{g(x) D_{p} f(x)-f(x) D_{p} g(x)}{g(x) g\left(x^{p}\right)} . \tag{2.3}
\end{equation*}
$$

Using (2.2) with functions $\frac{f(x)}{g(x)}$ and $g(x)$, we obtain

$$
\begin{equation*}
D_{p}\left(\frac{f(x)}{g(x)}\right)=\frac{g\left(x^{p}\right) D_{p} f(x)-f\left(x^{p}\right) D_{p} g(x)}{g(x) g\left(x^{p}\right)} . \tag{2.4}
\end{equation*}
$$

Both of (2.3) and (2.4) are valid.
Note 2.6. We do not have a general chain rule for p-derivatives, but in most cases we can have the following rule:

$$
D_{p}[f(u(x))]=D_{p} u(x) D_{\frac{h(x)}{\ln (u(x))}} f(u(x)),
$$

where $h(x)$ is depended on $u(x)$.
Example 2.7. If $\alpha>0$ and $u(x)=\alpha x^{\beta}$, then

$$
\begin{aligned}
D_{p}[f(u(x))] & =\frac{f\left(\alpha x^{p \beta}\right)-f\left(\alpha x^{\beta}\right)}{x^{p}-x} \\
& =\frac{f\left(\alpha x^{p \beta}\right)-f\left(\alpha x^{\beta}\right)}{\alpha x^{p \beta}-\alpha x^{\beta}} \cdot \frac{\alpha x^{p \beta}-\alpha x^{\beta}}{x^{p}-x} \\
& =D_{\frac{\ln (\alpha)+p \beta \ln (x)}{\ln (u(x))}}^{f(u(x)) D_{p} u(x),}
\end{aligned}
$$

because, $u(x) \frac{\ln (\alpha)+p \beta \ln (x)}{\ln (u(x))}=\alpha x^{p \beta}$.
Example 2.8. If $\alpha>0$ and $u(x)=\alpha e^{x}$, then

$$
\begin{aligned}
D_{p}[f(u(x))] & =\frac{f\left(\alpha e^{x^{p}}\right)-f\left(\alpha e^{x}\right)}{x^{p}-x} \\
& =\frac{f\left(\alpha e^{x^{p}}\right)-f\left(\alpha e^{x}\right)}{\alpha e^{x^{p}}-\alpha e^{x}} \cdot \frac{\alpha e^{x^{p}}-\alpha e^{x}}{x^{p}-x} \\
& =D_{\frac{\ln (\alpha)+x^{p}}{\ln (u(x))} f(u(x)) D_{p} u(x),}
\end{aligned}
$$

because, $u(x)^{\frac{\ln (\alpha)+x^{p}}{\ln (u(x))}}=\alpha e^{x^{p}}$.

3 -Integral

The first thing that comes to our mind after studying the derivative of a function is its integral topic. Before investigating it, let us define p-antiderivative of a function.

Definition 3.1. A function $F(x)$ is a p-antiderivative of $f(x)$ if $D_{p} F(x)=f(x)$. It is denoted by

$$
F(x)=\int f(x) d_{p} x
$$

Notice that as in ordinary calculus, the p-antiderivative of a function might not be unique. We can prove the uniqueness by some restrictions on the p-antiderivative and on p.

Theorem 3.2. Suppose $0<p<1$. Then, up to adding a constant, any function $f(x)$ has at most one p-antiderivative that is continuous at $x=1$.

Proof. Suppose F_{1} and F_{2} are two p-antiderivative of $f(x)$ that are continuous at $x=1$. Let $\Phi(x)=F_{1}(x)-F_{2}(x)$. Since F_{1} and F_{2} are continuous at $x=1$ and also by the definition of p-derivative that lead to $D_{p} \Phi(x)=0$, we have Φ is continuous at $x=1$ and $\Phi\left(x^{p}\right)=\Phi(x)$ for any x. Since for some sufficiently large $N>0, \Phi\left(x^{p^{N}}\right)=\Phi\left(x^{p^{N+1}}\right)=\ldots=\Phi(x)$ and also by the continuity Φ at $x=1$, it follows that $\Phi(x)=\Phi(1)$.

As was mentioned we denote the p-antiderivative of $f(x)$ by function $F(x)$ such that $D_{p} F(x)=$ $f(x)$. Here we're going to construct the p-antiderivative. For this purpose, we use of an operator. We define an operator \hat{M}_{p}, by $\hat{M}_{p}(F(x))=F\left(x^{p}\right)$. Then we have:

$$
\frac{1}{x^{p}-x}\left(\hat{M}_{p}-1\right) F(x)=\frac{F\left(x^{p}\right)-F(x)}{x^{p}-x}=D_{p} F(x)=f(x) .
$$

Since $\hat{M}_{p}^{j}(F(x))=F\left(x^{p^{j}}\right)$ for $j \in\{0,1,2,3, \ldots\}$ and also by the geometric series expansion, we formally have

$$
\begin{equation*}
F(x)=\frac{1}{1-\hat{M}_{p}}\left(\left(x-x^{p}\right) f(x)\right)=\sum_{j=0}^{\infty} \hat{M}_{p}^{j}\left(\left(x-x^{p}\right) f(x)\right)=\sum_{j=0}^{\infty}\left(x^{p^{j}}-x^{p^{j+1}}\right) f\left(x^{p^{j}}\right) \tag{3.1}
\end{equation*}
$$

It is worth mentioning that we say that (3.1) is formal because the series does not always converge.

Definition 3.3. The p-integral of $f(x)$ is defined to be the series

$$
\begin{equation*}
\sum_{j=0}^{\infty}\left(x^{p^{j}}-x^{p^{j+1}}\right) f\left(x^{p^{j}}\right) \tag{3.2}
\end{equation*}
$$

Remark 3.4. Generally, the p-integral does not always converge to a p-antiderivative. Here we want to give a sufficient condition for convergence the p-integral to a p-antiderivative.

Theorem 3.5. Suppose $0<p<1$. If $\left|f(x) x^{\alpha}\right|$ is bounded on the interval $(0, A]$ for some $0 \leq \alpha<1$, then the p-integral defined by (3.2) converges to a function $H(x)$ on $(0, A]$, which is a p-antiderivative of $f(x)$. Moreover, $H(x)$ is continuous at $x=1$ with $H(1)=0$.

Proof. We consider the following two cases.
Case 1. $x \in(1, A]$. Suppose $\left|f(x) x^{\alpha}\right|<M$ on $(1, A]$. For any $1<x \leq A, j \geq 0$

$$
\left|f\left(x^{p^{j}}\right)\right|<M\left(x^{p^{j}}\right)^{-\alpha}<M .
$$

Thus, for any $1<x \leq A$, we have

$$
\left|\left(x^{p^{j}}-x^{p^{j+1}}\right) f\left(x^{p^{j}}\right)\right| \leq\left(x^{p^{j}}-x^{p^{j+1}}\right) M .
$$

Since

$$
\sum_{j=0}^{\infty}\left(x^{p^{j}}-x^{p^{j+1}}\right) M=M(x-1)
$$

thus, it follows from the comparison test that the p-integral converges to a function $F(x)$. It follows directly from (3.1) that $F(1)=0$. We want now to prove that $F(x)$ is a p-antiderivative of $f(x)$, but before of it let us show F is right continuous at $x=1$. For $1<x \leq A$,

$$
|F(x)|=\left|\sum_{j=0}^{\infty}\left(x^{p^{j}}-x^{p^{j+1}}\right) f\left(x^{p^{j}}\right)\right| \leq M(x-1)
$$

which approaches 0 as $x \rightarrow 1^{+}$. Since $F(1)=0$, thus F is right continuous at $x=1$. To prove that $F(x)$ is a p-antiderivative, it is sufficient to p-differentiate it:

$$
\begin{aligned}
D_{p} F(x) & =\frac{F\left(x^{p}\right)-F(x)}{x^{p}-x} \\
& =\frac{\sum_{j=0}^{\infty}\left(x^{p^{j+1}}-x^{p^{j+2}}\right) f\left(x^{p^{j+1}}\right)-\sum_{j=0}^{\infty}\left(x^{p^{j}}-x^{p^{j+1}}\right) f\left(x^{p^{j}}\right)}{x^{p}-x} \\
& =f(x) .
\end{aligned}
$$

Case 2. $x \in(0,1)$. Suppose $\left|f(x) x^{\alpha}\right|<M$ on (0,1). For any $0<x<1, j \geq 0$

$$
\left|f\left(x^{p^{j}}\right)\right|<M\left(x^{p^{j}}\right)^{-\alpha} \leq M x^{-\alpha} .
$$

Thus, for any $0<x<1$, we have

$$
\left|\left(x^{p^{j}}-x^{p^{j+1}}\right) f\left(x^{p^{j}}\right)\right| \leq\left(x^{p^{j+1}}-x^{p^{j}}\right) M x^{-\alpha}
$$

and since

$$
\sum_{j=0}^{\infty}\left(x^{p^{j+1}}-x^{p^{j}}\right) M x^{-\alpha}=M x^{-\alpha}(1-x)
$$

hence, it follows from the comparison test that the p-integral converges to a function $G(x)$ and by (3.1) we have $G(1)=0$. Similar to proof of case 1 , it is easy to verify that G is left continuous at $x=1$ and is also a p-antiderivative of $f(x)$. We now define

$$
H(x)=G(x) \chi_{(0,1)}(x)+F(x) \chi_{(1, A]}(x) .
$$

It is easy to see p-integral converges to $H(x)$ on $(0, A]$ and also $H(x)$ is a p-antiderivative of $f(x)$ on $(0,1) \cup(1, A]$ and is continuous at $x=1$ with $H(1)=0$. If $f(x)$ is continuous in $x=1$, then $D_{p} H(1)=\lim _{x \rightarrow 1} D_{p} H(x)=f(1)$ and it concludes that $H(x)$ is a p-antiderivative of $f(x)$ on $(0, A]$, hence the proof is complete.

Corollary 3.6. If the assumption of Theorem 3.5 is satisfied, then by Theorem 3.2, the p-integral gives the unique p-antiderivative that is continuous at $x=1$, up to adding a constant.

Example 3.7. Let $0<p<1$ and $f(x)=c$, i.e., $f(x)$ is constant. Since for $0 \leq \alpha<1,\left|f(x) x^{\alpha}\right|$ is bounded on interval $(0, A]$, hence by Theorem 3.5, p-integral of $f(x)$ converges whose it is valid, because

$$
\sum_{j=0}^{\infty}\left(x^{p^{j}}-x^{p^{j+1}}\right) f\left(x^{p^{j}}\right)=c \sum_{j=0}^{\infty}\left(x^{p^{j}}-x^{p^{j+1}}\right)=c(x-1) \chi_{(0, A]}(x)
$$

Example 3.8. Let $0<p<1$ and $f(x)=\frac{1}{x-x^{p}}$. The p-integral gives

$$
\sum_{j=0}^{\infty}\left(x^{p^{j}}-x^{p^{j+1}}\right) f\left(x^{p^{j}}\right)=\sum_{j=0}^{\infty}\left(x^{p^{j}}-x^{p^{j+1}}\right) \frac{1}{x^{p^{j}}-x^{p^{j+1}}}=\infty
$$

and also $f(x) x^{\alpha}$ is not bounded on $(0,1) \cup(1, A]$ and $0 \leq \alpha<1$.

4 Definite p-Integral

We now are in position to define the definite p-integral. Generally, one of the principle tools to define the definite p-integral of a function is use of a partition on a set. we will use of it to achieve our goal. As proof of the Theorem 3.5, we consider the following three cases. Then, the definite p-integral related to each case is given.

Case 1. Let $1<a<b$ where $a, b \in R^{+}, p \in(0,1)$ and function f is defined on $(1, b]$. Notice that for any $j \in\{0,1,2,3, \ldots\}, b^{p^{j}} \in(1, b]$. We now define the definite p-integral of $f(x)$ on interval $(1, b]$.

Definition 4.1. The definite p-integral of $f(x)$ on the interval $(1, b]$ is defined as

$$
\begin{equation*}
\int_{1}^{b} f(x) d_{p} x=\lim _{N \rightarrow \infty} \sum_{j=0}^{N}\left(b^{p^{j}}-b^{p^{j+1}}\right) f\left(b^{p^{j}}\right)=\sum_{j=0}^{\infty}\left(b^{p^{j}}-b^{p^{j+1}}\right) f\left(b^{p^{j}}\right), \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{a}^{b} f(x) d_{p} x=\int_{1}^{b} f(x) d_{p} x-\int_{1}^{a} f(x) d_{p} x \tag{4.2}
\end{equation*}
$$

Note 4.2. Geometrically, the integral in (4.1) corresponds to the area of the union of an infinite number of rectangles. On $[1+\varepsilon, b]$, where ε is a small positive number, the sum consists of finitely many terms, and is a Riemann sum. Therefore, as $p \rightarrow 1$, the norm of partition approaches zero, and the sum tends to the Riemann integral on $[1+\varepsilon, b]$. Since ε is arbitrary, provided that $f(x)$ is continuous in the interval $[1, b]$, thus we have

$$
\lim _{p \rightarrow 1} \int_{1}^{b} f(x) d_{p} x=\int_{1}^{b} f(x) d x
$$

Example 4.3. Let $b=3$ and $f(x)=c$ where c is constant.

$$
\begin{aligned}
\int_{1}^{3} c d_{p} x & =\lim _{N \rightarrow \infty} \sum_{j=0}^{N}\left(3^{p^{j}}-3^{p^{j+1}}\right) f\left(3^{p^{j}}\right) \\
& =c \lim _{N \rightarrow \infty}\left[\left(3-3^{p}\right)+\left(3^{p}-3^{p^{2}}\right)+\left(3^{p^{2}}-3^{p^{3}}\right)+\ldots+\left(3^{p^{N}}-3^{p^{N+1}}\right)\right] \\
& =c \lim _{N \rightarrow \infty}\left[3-3^{p^{N+1}}\right]=c(3-1)=2 c
\end{aligned}
$$

and if $a=2$,

$$
\int_{2}^{3} c d_{p} x=\int_{1}^{3} c d_{p} x-\int_{1}^{2} c d_{p} x=2 c-c=c .
$$

Example 4.4. Let $b=2$ and $f(x)=\frac{\ln (x)}{x-x^{p}}$.

$$
\int_{1}^{2} f(x) d_{p} x=\sum_{j=0}^{\infty}\left(2^{p^{j}}-2^{p^{j+1}}\right) \frac{\ln \left(2^{p^{j}}\right)}{2^{p^{j}}-2^{p^{j+1}}}=\sum_{j=0}^{\infty} p^{j} \ln (2)=\frac{\ln (2)}{1-p} .
$$

Case 2. Let $0<a<b<1$ and $p \in(0,1)$. It should be noted that for any $j \in\{0,1,2,3, \ldots\}$, $b^{p^{j}} \in[b, 1)$ and $b^{p^{j}}<b^{p^{j+1}}$. We will define the definite p-integral of $f(x)$ on interval $[b, 1)$ as follows.

Definition 4.5. The definite p-integral of $f(x)$ on the interval $[b, 1)$ is defined as

$$
\int_{b}^{1} f(x) d_{p} x=\lim _{N \rightarrow \infty} \sum_{j=0}^{N}\left(b^{p^{j+1}}-b^{p^{j}}\right) f\left(b^{p^{j}}\right)=\sum_{j=0}^{\infty}\left(b^{p^{j+1}}-b^{p^{j}}\right) f\left(b^{p^{j}}\right) .
$$

Example 4.6. Let $b=\frac{1}{2}$ and $f(x)=c$

$$
\begin{aligned}
\int_{\frac{1}{2}}^{1} c d_{p} x & =\lim _{N \rightarrow \infty} \sum_{j=0}^{N}\left(\left(\frac{1}{2}\right)^{p^{j+1}}-\left(\frac{1}{2}\right)^{p^{j}}\right) c \\
& =c \lim _{N \rightarrow \infty}\left[\left(\left(\frac{1}{2}\right)^{p}-\left(\frac{1}{2}\right)\right)+\left(\left(\frac{1}{2}\right)^{p^{2}}-\left(\frac{1}{2}\right)^{p}\right)+\left(\left(\frac{1}{2}\right)^{p^{3}}-\left(\frac{1}{2}\right)^{p^{2}}\right)+\ldots+\left(\left(\frac{1}{2}\right)^{p^{N+1}}-\left(\frac{1}{2}\right)^{p^{N}}\right)\right] \\
& =c \lim _{N \rightarrow \infty}\left[-\frac{1}{2}+\left(\frac{1}{2}\right)^{p^{N+1}}\right]=c\left(-\frac{1}{2}+1\right)=\frac{1}{2} c .
\end{aligned}
$$

Note 4.7. The above two definite p-integrals are also denoted by

$$
\begin{aligned}
\int_{1}^{b} f(x) d_{p} x & =I_{p^{+}} f(b) \\
\int_{b}^{1} f(x) d_{p} x & =I_{p^{-}} f(b)
\end{aligned}
$$

Case 3. Let $0<a<b<1$ and $p \in(0,1)$. Then for any $j \in\{0,1,2,3, \ldots\}, b^{p^{-j}} \in(0, b]$ and $b^{p^{-j-1}}<b^{p^{-j}}$. Let us state the definite p-integral of $f(x)$ on interval $(0, b]$.

Definition 4.8. The definite p-integral of $f(x)$ on the interval $(0, b]$ is defined as

$$
\begin{equation*}
I_{p} f(b)=\int_{0}^{b} f(x) d_{p} x=\lim _{N \rightarrow \infty} \sum_{j=0}^{N}\left(b^{p^{-j}}-b^{p^{-j-1}}\right) f\left(b^{p^{-j-1}}\right)=\sum_{j=0}^{\infty}\left(b^{p^{-j}}-b^{p^{-j-1}}\right) f\left(b^{p^{-j-1}}\right), 4 . \tag{4.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{a}^{b} f(x) d_{p} x=\int_{0}^{b} f(x) d_{p} x-\int_{0}^{a} f(x) d_{p} x \tag{4.4}
\end{equation*}
$$

Example 4.9. Let $a=\frac{1}{4}, b=\frac{1}{2}$ and $f(x)=c$.

$$
\begin{aligned}
\int_{0}^{\frac{1}{2}} c d_{p} x & =\lim _{N \rightarrow \infty} \sum_{j=0}^{N}\left(\left(\frac{1}{2}\right)^{p^{-j}}-\left(\frac{1}{2}\right)^{p^{-j-1}}\right) c \\
& =c \lim _{N \rightarrow \infty}\left[\left(\left(\frac{1}{2}\right)-\left(\frac{1}{2}\right)^{p^{-1}}\right)+\left(\left(\frac{1}{2}\right)^{p^{-1}}-\left(\frac{1}{2}\right)^{p^{-2}}\right)+\ldots+\left(\left(\frac{1}{2}\right)^{p^{-N}}-\left(\frac{1}{2}\right)^{p^{-N-1}}\right)\right] \\
& =c \lim _{N \rightarrow \infty}\left[\left(\frac{1}{2}\right)-\left(\frac{1}{2}\right)^{p^{-N-1}}\right]=\frac{1}{2} c .
\end{aligned}
$$

Similarly,

$$
\int_{0}^{\frac{1}{4}} c d_{p} x=\frac{1}{4} c
$$

thus we have

$$
\int_{\frac{1}{4}}^{\frac{1}{2}} c d_{p} x=\int_{0}^{\frac{1}{2}} c d_{p} x-\int_{0}^{\frac{1}{4}} c d_{p} x=\frac{1}{4} c .
$$

Note 4.10. We can also apply Note 4.2 for the p-integrals defined in the cases 2 and 3 on the intervals $[b, 1-\varepsilon]$ and $[\varepsilon, b]$ respectively, and by it define the Riemann integral.

Definition 4.11. Suppose $0 \leq a<1<b$. Then by Note 4.2 and Note 4.10, we have

$$
\int_{a}^{b} f(x) d_{p} x=\int_{a}^{1} f(x) d_{p} x+\int_{1}^{b} f(x) d_{p} x
$$

Corollary 4.12. By the definitions of p-integrals, we derive a more general formula:
i) If $b>1$,

$$
\int_{1}^{b} f(x) d_{p} g(x)=\sum_{j=0}^{\infty} f\left(b^{p^{j}}\right)\left(g\left(b^{p^{j}}\right)-g\left(b^{p^{j+1}}\right)\right)
$$

ii) If $0<b<1$,

$$
\int_{0}^{b} f(x) d_{p} g(x)=\sum_{j=0}^{\infty} f\left(b^{p^{-j-1}}\right)\left(g\left(b^{p^{-j}}\right)-g\left(b^{p^{-j-1}}\right)\right) .
$$

Because,

$$
\begin{aligned}
\int_{1}^{b} f(x) D_{p} g(x) d_{p} x & =\sum_{j=0}^{\infty}\left(b^{p^{j}}-b^{p^{j+1}}\right)\left(f\left(b^{p^{j}}\right) D_{p} g\left(b^{p^{j}}\right)\right) \\
& =\sum_{j=0}^{\infty}\left(b^{p^{j}}-b^{p^{j+1}}\right) f\left(b^{p^{j}}\right)\left(\frac{g\left(b^{p^{j+1}}\right)-g\left(b^{p^{j}}\right)}{b^{p^{j+1}}-b^{p^{j}}}\right) \\
& =\sum_{j=0}^{\infty} f\left(b^{p^{j}}\right)\left(g\left(b^{p^{j}}\right)-g\left(b^{p^{j+1}}\right)\right)
\end{aligned}
$$

Since $D_{p} g(x)=\frac{d_{p} g(x)}{d_{p} x}$, hence we have

$$
\int_{1}^{b} f(x) d_{p} g(x)=\sum_{j=0}^{\infty} f\left(b^{p^{j}}\right)\left(g\left(b^{p^{j}}\right)-g\left(b^{p^{j+1}}\right)\right)
$$

Similarly, it is easy to prove (b).
Definition 4.13. The p-integral of higher order of function f is given by

$$
\left(I_{p}^{0} f\right)(x)=f(x), \quad\left(I_{p}^{n} f\right)(x)=I_{p}\left(I_{p}^{n-1} f\right)(x), \quad n \in N
$$

5 Improper p-Integral

In this section we want to define the improper p-integral of $f(x)$ and also give a sufficient condition for its convergence. We start this section by computing the following p-integral.

Let $p \in(0,1)$, thus $p^{-1}>1$ and consider $p^{-1}=b$. For any $j \in\{0, \pm 1, \pm 2, \ldots\}$, we have $b^{p^{j}}>1$, $b^{p^{j+1}}<b^{p^{j}}$ and thus according to (4.2), we obtain

$$
\begin{aligned}
\int_{b^{p^{j+1}}}^{b^{p^{j}}} f(x) d_{p} x & =\int_{1}^{b^{p^{j}}} f(x) d_{p} x-\int_{1}^{b^{p^{j+1}}} f(x) d_{p} x \\
& =\sum_{k=0}^{\infty}\left(\left(b^{p^{j}}\right)^{p^{k}}-\left(b^{p^{j}}\right)^{p^{k+1}}\right) f\left(\left(b^{p^{j}}\right)^{p^{k}}\right)-\sum_{k=0}^{\infty}\left(\left(b^{p^{j+1}}\right)^{p^{k}}-\left(b^{p^{j+1}}\right)^{p^{k+1}}\right) f\left(\left(b^{p^{j+1}}\right)^{p^{k}}\right) \\
& =\sum_{k=0}^{\infty}\left(b^{p^{k+j}}-b^{p^{k+j+1}}\right) f\left(b^{p^{k+j}}\right)-\sum_{k=0}^{\infty}\left(b^{p^{k+j+1}}-b^{p^{k+j+2}}\right) f\left(b^{p^{k+j+1}}\right)
\end{aligned}
$$

and thus,

$$
\int_{b^{p}+1}^{b^{p^{j}}} f(x) d_{p} x=\left(b^{p^{j}}-b^{p^{j+1}}\right) f\left(b^{p^{j}}\right)
$$

We now define the improper p-integral as follows.
Definition 5.1. Let $p \in(0,1)$ and $p^{-1}=b$. The improper p-integral of $f(x)$ on $[1,+\infty)$ is defined to be

$$
\begin{aligned}
\int_{1}^{\infty} f(x) d_{p} x=\sum_{j=-\infty}^{\infty} \int_{b^{p^{j+1}}}^{b^{p^{j}}} f(x) d_{p} x & =\sum_{j=-\infty}^{\infty}\left(b^{p^{j}}-b^{p^{j+1}}\right) f\left(b^{p^{j}}\right) \\
& =\sum_{j=0}^{\infty}\left(b^{p^{j}}-b^{p^{j+1}}\right) f\left(b^{p^{j}}\right)+\sum_{j=1}^{\infty}\left(b^{p^{-j}}-b^{p^{-j+1}}\right) f\left(b^{p^{-j}}\right)
\end{aligned}
$$

Definition 5.2. If $p \in(0,1)$, then for any $j \in\{0, \pm 1, \pm 2, \ldots\}$, we have $p^{p^{j}} \in(0,1), p^{p^{j}}<p^{p^{j+1}}$ and

$$
\int_{0}^{1} f(x) d_{p} x=\sum_{j=-\infty}^{\infty}\left(p^{p^{j+1}}-p^{p^{j}}\right) f\left(p^{p^{j}}\right)
$$

Because, according to (4.4)

$$
\int_{p^{p^{j}}}^{p^{p^{j+1}}} f(x) d_{p} x=\int_{0}^{p^{p^{j+1}}} f(x) d_{p} x-\int_{0}^{p^{p^{j}}} f(x) d_{p} x=\left(p^{p^{j+1}}-p^{p^{j}}\right) f\left(p^{p^{j}}\right)
$$

Hence,

$$
\int_{0}^{1} f(x) d_{p} x=\sum_{j=-\infty}^{\infty} \int_{p^{p}}^{p^{p^{j+1}}} f(x) d_{p} x=\sum_{j=-\infty}^{\infty}\left(p^{p^{j+1}}-p^{p^{j}}\right) f\left(p^{p^{j}}\right) .
$$

Definition 5.3. Let $p \in(0,1)$. Then the improper p-integral of $f(x)$ on $[0, \infty]$ is defined to be

$$
\int_{0}^{\infty} f(x) d_{p} x=\int_{0}^{1} f(x) d_{p} x+\int_{1}^{\infty} f(x) d_{p} x
$$

Definition 5.4. Let $p \in(0,1)$. Then the improper p-integral of $f(x)$ on $[a, \infty]$ is defined as follows:
i) If $0<a<1$, then

$$
\int_{a}^{\infty} f(x) d_{p} x=\int_{a}^{1} f(x) d_{p} x+\int_{1}^{\infty} f(x) d_{p} x
$$

ii) If $a>1$, then

$$
\int_{a}^{\infty} f(x) d_{p} x=\lim _{N \rightarrow \infty} \sum_{j=1}^{N} \int_{a^{p^{-j+1}}}^{a^{p^{-j}}} f(x) d_{p} x
$$

Here we give a sufficient condition for convergence the improper p-integral.
Proposition 5.5. Let $p \in(0,1), 0<r<\infty$ and ε is a small positive number. Assume that inequality

$$
|f(x)|<\min \left\{r x^{-\alpha},\left|x-x^{p}\right|^{-1}(\ln x)^{2 \alpha}\right\}
$$

holds in neighborhood of $x=1$ with some $0 \leq \alpha<1$ and for sufficiently large x with some $-\varepsilon \leq \alpha<0$. Then, the improper p-integral of $f(x)$ converges on $[1, \infty)$.

Proof. Consider $b=p^{-1}$. According to Definition 5.1, we have

$$
\int_{1}^{\infty} f(x) d_{p} x=\sum_{j=0}^{\infty}\left(b^{p^{j}}-b^{p^{j+1}}\right) f\left(b^{p^{j}}\right)+\sum_{j=1}^{\infty}\left(b^{p^{-j}}-b^{p^{-j+1}}\right) f\left(b^{p^{-j}}\right)
$$

By the assumptions and also Theorem 3.5, the convergence of the first sum is proved. For large x, we have $|f(x)|<\left|x-x^{p}\right|^{-1}(\ln x)^{2 \alpha}$ where $-\varepsilon \leq \alpha<0$. Then, we have for sufficiently large j,

$$
\left|f\left(b^{p^{-j}}\right)\right|<\left(b^{p^{-j}}-b^{p^{-j+1}}\right)^{-1}\left(\ln b^{p^{-j}}\right)^{2 \alpha} .
$$

Hence

$$
\begin{aligned}
\left|\left(b^{p^{-j}}-b^{p^{-j+1}}\right) f\left(b^{p^{-j}}\right)\right| & \leq\left(b^{p^{-j}}-b^{p^{-j+1}}\right)\left(b^{p^{-j}}-b^{p^{-j+1}}\right)^{-1}\left(\ln b^{p^{-j}}\right)^{2 \alpha} \\
& =\left(\ln b^{p^{-j}}\right)^{2 \alpha}=\left(p^{-j} \ln b\right)^{2 \alpha}=(\ln b)^{2 \alpha}\left(p^{-2 \alpha}\right)^{j}
\end{aligned}
$$

Therefore, by the comparison test, the second sum also converges.

6 Fundamental Theorem of p-Calculus

Since we are familiar with the concepts of p-derivative and p-integral, so we're going to study the relation between them as follows. We begin this section with the following lemma.

Lemma 6.1. If $x>1$ and $p \in(0,1)$, then $D_{p^{\prime}} I_{p^{+}} f(x)=f(x)$, and also if function f is continuous at $x=1$, then we have $I_{p^{+}} D_{p} f(x)=f(x)-f(1)$.

Proof. According to definitions of p-derivative and p-integral, we have

$$
I_{p^{+}} f(x)=\int_{1}^{x} f(s) d_{p} s=\sum_{j=0}^{\infty}\left(x^{p^{j}}-x^{p^{j+1}}\right) f\left(x^{p^{j}}\right)
$$

Hence

$$
\begin{aligned}
D_{p^{\prime}} I_{p^{+}} f(x) & =\frac{I_{p^{+}} f\left(x^{p}\right)-I_{p^{+}} f(x)}{x^{p}-x} \\
& =\frac{\sum_{j=0}^{\infty}\left(x^{p^{j+1}}-x^{p^{j+2}}\right) f\left(x^{\left.p^{p^{j+1}}\right)-\sum_{j=0}^{\infty}\left(x^{p^{j}}-x^{p^{j+1}}\right) f\left(x^{p^{j}}\right)}\right.}{x^{p}-x} \\
& =\frac{\left[\left(x^{p}-x^{p^{2}}\right) f\left(x^{p}\right)+\left(x^{p^{2}}-x^{p^{3}}\right) f\left(x^{p^{2}}\right)+\ldots\right]-\left[\left(x-x^{p}\right) f(x)+\left(x^{p}-x^{p^{2}}\right) f\left(x^{p}\right)+\ldots\right]}{x^{p}-x} \\
& =\frac{\left(x^{p}-x\right) f(x)}{x^{p}-x}=f(x) .
\end{aligned}
$$

Also

$$
\begin{aligned}
I_{p^{+}} D_{p} f(x) & =\lim _{N \rightarrow \infty} \sum_{j=0}^{N}\left(x^{p^{j}}-x^{p^{j+1}}\right) D_{p} f\left(x^{p^{j}}\right) \\
& =\lim _{N \rightarrow \infty} \sum_{j=0}^{N}\left(x^{p^{j}}-x^{p^{j+1}}\right)\left(\frac{f\left(x^{p^{j+1}}\right)-f\left(x^{p^{j}}\right)}{x^{p^{j+1}}-x^{p^{j}}}\right) \\
& =\lim _{N \rightarrow \infty} \sum_{j=0}^{N}\left(f\left(x^{p^{j}}\right)-f\left(x^{p^{j+1}}\right)\right) \\
& =\lim _{N \rightarrow \infty}\left(f(x)-f\left(x^{p^{N+1}}\right)\right)=f(x)-f(1) . \square
\end{aligned}
$$

The last equality is true because f is continuous at $x=1$. Similarly, it is easy to obtain the following lemmas.

Lemma 6.2. If $x, p \in(0,1)$, then $D_{p} I_{p^{-}} f(x)=-f(x)$, and also if function f is continuous at $x=1$, then we have $I_{p^{-}} D_{p} f(x)=f(1)-f(x)$.

Lemma 6.3. If $x, p \in(0,1)$ and $I_{p} f(x)=\int_{0}^{x} f(s) d_{p} s$, then $D_{p} I_{p} f(x)=f(x)$ and also if function f is continuous at $x=0$, then we have $I_{p} D_{p} f(x)=f(x)-f(0)$.

We are now in a position to express fundamental theorem for p-calculus.
Theorem 6.4. (Fundamental theorem of p-calculus) Let $p \in(0,1)$. If $F(x)$ is an antiderivative of $f(x)$ and $F(x)$ is continuous at $x=0$ and $x=1$, then for every $0 \leq a<b \leq \infty$, we have

$$
\begin{equation*}
\int_{a}^{b} f(x) d_{p} x=F(b)-F(a) . \tag{6.1}
\end{equation*}
$$

Proof. We consider the following cases.
Case 1. Let $1<a<b$ and a, b are finite. Since $F(x)$ is an antiderivative of $f(x)$, hence $D_{p} F(x)=f(x)$. By Lemma 6.1, we have

$$
F(x)-F(1)=I_{p^{+}} f(x)=\int_{1}^{x} f(s) d_{p} s
$$

which implies,

$$
\int_{1}^{a} f(s) d_{p} s=F(a)-F(1), \quad \int_{1}^{b} f(s) d_{p} s=F(b)-F(1) .
$$

Using (4.2), thus we have

$$
\int_{a}^{b} f(x) d_{p} x=F(b)-F(a) .
$$

Case 2. Let $0 \leq a<b<1$. Since $D_{p} F(x)=f(x)$, by Lemma 6.3, we have

$$
F(x)-F(0)=I_{p} f(x)=\int_{0}^{x} f(s) d_{p} s
$$

which implies,

$$
\int_{0}^{a} f(s) d_{p} s=F(a)-F(0), \quad \int_{0}^{b} f(s) d_{p} s=F(b)-F(0)
$$

Using (4.4), thus we have

$$
\int_{a}^{b} f(x) d_{p} x=F(b)-F(a) .
$$

Case 3. Let $0<a<1<b$ and b is finite. According to Note 4.11 and also by Lemma 6.2, we have

$$
\int_{a}^{1} f(x) d_{p} x=I_{p^{-}} f(a)=I_{p^{-}} D_{p} F(a)=F(1)-F(a) .
$$

Similarly,

$$
\int_{1}^{b} f(x) d_{p} x=I_{p^{+}} f(b)=I_{p^{+}} D_{p} F(b)=F(b)-F(1) .
$$

Thus

$$
\int_{a}^{b} f(x) d_{p} x=F(b)-F(a) .
$$

For $b=+\infty$, without loss of generality, we consider $a>1$ and by the Definition 5.4, we have

$$
\begin{aligned}
\int_{a}^{+\infty} f(x) d_{p} x & =\lim _{N \rightarrow \infty} \sum_{j=1}^{N} \int_{a^{p^{-j+1}}}^{a^{p^{-j}}} f(x) d_{p} x \\
& =\lim _{N \rightarrow \infty} \sum_{j=1}^{N}\left(F\left(a^{p^{-j}}\right)-F\left(a^{p^{-j+1}}\right)\right) \\
& =\lim _{N \rightarrow \infty}\left(F\left(a^{p^{-N}}\right)-F(a)\right)
\end{aligned}
$$

and if $\lim _{x \rightarrow \infty} F(x)$ exists, so (6.1) is true for $b=\infty$.
Corollary 6.5. If $f(x)$ is continuous at $x=0$ and $x=1$, then we have

$$
\int_{a}^{b} D_{p} f(x) d_{p} x=f(b)-f(a)
$$

Corollary 6.6. If $f(x)$ and $g(x)$ are continuous at $x=0$ and $x=1$, then we have

$$
\int_{a}^{b} f(x) d_{p} g(x)=f(b) g(b)-f(a) g(a)-\int_{a}^{b} g\left(x^{p}\right) d_{p} f(x)
$$

Proof. Using the product rule (2.1), we have

$$
\int_{a}^{b} D_{p}(f g)(x) d_{p} x=\int_{a}^{b}\left(f(x) D_{p} g(x)+g\left(x^{p}\right) D_{p} f(x)\right) d_{p} x
$$

By Corollary 6.5, we have

$$
f(b) g(b)-f(a) g(a)=\int_{a}^{b} f(x) D_{p} g(x) d_{p} x+\int_{a}^{b} g\left(x^{p}\right) D_{p} f(x) d_{p} x
$$

Since, $D_{p} g(x) d_{p} x=d_{p} g(x)$, thus

$$
\int_{a}^{b} f(x) d_{p} g(x)=f(b) g(b)-f(a) g(a)-\int_{a}^{b} g\left(x^{p}\right) d_{p} f(x)
$$

References

[1] M.H. Annaby, Z.S. Mansour, q-Fractional Calculus and Equations, Springer-Verlag, Berlin Heidelberg, 2012.
[2] A. Aral, V. Gupta, R.P. Agarwal, Applications of q-Calculus in Operator Theory, New York, Springer, 2013.
[3] T. Ernst, The history of q-calculus and a new method, Thesis, Uppsala University, 2001.
[4] T. Ernst, A comprehensive treatment of q-calculus, Springer Science, Business Media, 2012.
[5] R.J. Finkelstein, Symmetry group of the hydrogen atom, J. Math. Phys. 8 (1967), no. 3, 443-449.
[6] R.J. Finkelstein, The q-Coulomb problem, J. Math. Phys. 37 (1996), no. 6, 2628-2636.
[7] K.R. Parthasarathy, An introduction to quantum stochastic calculus, Springer Science, Business Media, 2012.
[8] V. Kac, P. Cheung, Quantum calculus, Springer Science, Business Media, 2002.

[^0]: * Corresponding author

