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Abstract

In this paper we introduce a new type of quantum calculus, the p-calculus involving two
concepts of p-derivative and p-integral. After familiarity with them some results are given.
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1 Introduction

Simply put, quantum calculus is ordinary calculus without taking limit. In ordinary calculus, the

derivative of a function f(x) is defined as f ′(x) = lim
y→x

f(y)−f(x)
y−x . However, if we avoid taking the

limit and also take y = xp, where p is a fixed number different from 1, i.e., by considering the
following expression:

f(xp)− f(x)

xp − x
, (1.1)

then, we create a new type of quantum calculus, the p-calculus, and the corresponding express is
the definition of the p-derivative. The formula (1.1) and several of the results derived from it which
will be mentioned in the next sections, appear to be new. In [8] the authors developed two types
of quantum calculus, the q-calculus and the h-calculus. If in the definition of f ′(x), as has been
stated above, we do not take limit and also take y = qx or y = x + h, where q is a fixed number
different from 1, and h a fixed number different from 0, the q-derivative and the h-derivative of
f(x) are defined. For more details, we refer the readers to [1, 2, 4, 7]. Generally, in the last decades
the q-calculus has developed into an interdisciplinary subject, which is briefly discussed in chapters
3 and 7 of [3] and also has interesting applications in various sciences such as physics, chemistry,
etc [5, 6]. A history of the q-calculus was given by T.Ernst [3].

The purpose of this paper is to introduce another type of quantum calculus, the p-calculus, also
we’re going to give some results by it. The paper has been organized as follows. In section 2, we
define the p-derivative, also some of its properties will be expressed. In section 3, we introduce
the p-integral, including a sufficient condition for its convergence is given. In section 4, we will
define the definite p-integral, followed by the definition of the improper p-integral. Finally, we will
conclude our discussion by fundamental theorem of p-calculus.

2 p-Derivative

Throughout this section, we assume that p is a fixed number different from 1 and domain of function
f(x) is [0,+∞).
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16 A. Neamaty, M. Tourani

Definition 2.1. Let f(x) be an arbitrary function. We define its p-differential to be

dpf(x) = f(xp)− f(x).

In particular, dpx = xp − x. By the p-differential we can define p-derivative of a function.

Definition 2.2. Let f(x) be an arbitrary function. We define its p-derivative to be

Dpf(x) =
f(xp)− f(x)

xp − x
, ifx 6= 0, 1

and
Dpf(0) = lim

x→0+
Dpf(x), Dpf(1) = lim

x→1
Dpf(x).

Remark 2.3. If f(x) is differentiable, then lim
p→1

Dpf(x) = f ′(x), and also if f ′(x) exists in a

neighborhood of x = 0, x = 1 and is continuous at x = 0 and x = 1, then we have

Dpf(0) = f ′+(0), Dpf(1) = f ′(1).

Definition 2.4. The p-derivative of higher order of function f is defined by

(D0
pf)(x) = f(x), (Dn

p f)(x) = Dp(D
n−1
p f)(x), n ∈ N.

Example 2.5. Let f(x) = c, g(x) = xn and h(x) = ln(x) where c is constant and n ∈ N . Then
we have

(i) Dpf(x) = 0,

(ii) Dpg(x) =
g(xp)− g(x)

xp − x
=
xpn − xn

xp − x
=
x(p−1)n − 1

xp−1 − 1
xn−1,

(iii) Dph(x) =
h(xp)− h(x)

xp − x
=

(p− 1) ln(x)

xp − x
=

(p− 1) ln(x)

xp−1 − 1

1

x
.

Notice that the p-derivative is a linear operator, i.e., for any constants a and b, and arbitrary
functions f(x) and g(x), we have

Dp(af(x) + bg(x)) = aDpf(x) + bDpg(x).

We want now to compute the p-derivative of the product and the quotient of f(x) and g(x).

Dp(f(x)g(x)) =
f(xp)g(xp)− f(x)g(x)

xp − x

=
f(xp)g(xp)− f(x)g(xp) + f(x)g(xp)− f(x)g(x)

xp − x

=
(f(xp)− f(x))g(xp) + f(x)(g(xp)− g(x))

xp − x
.

Thus

Dp(f(x)g(x)) = g(xp)Dpf(x) + f(x)Dpg(x). (2.1)
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The presentation of a new type of quantum calculus 17

Similarly, we can interchange f and g, and obtain

Dp(f(x)g(x)) = g(x)Dpf(x) + f(xp)Dpg(x), (2.2)

which both of (2.1) and (2.2) are valid and equivalent. Here let us prove quotient rule. By changing

f(x) to
f(x)

g(x)
in (2.1), we have

Dpf(x) = Dp(
f(x)

g(x)
g(x)) = g(xp)Dp(

f(x)

g(x)
) +

f(x)

g(x)
Dpg(x),

and thus

Dp(
f(x)

g(x)
) =

g(x)Dpf(x)− f(x)Dpg(x)

g(x)g(xp)
. (2.3)

Using (2.2) with functions f(x)
g(x) and g(x), we obtain

Dp(
f(x)

g(x)
) =

g(xp)Dpf(x)− f(xp)Dpg(x)

g(x)g(xp)
. (2.4)

Both of (2.3) and (2.4) are valid.

Note 2.6. We do not have a general chain rule for p-derivatives, but in most cases we can have
the following rule:

Dp[f(u(x))] = Dpu(x)D h(x)
ln(u(x))

f(u(x)),

where h(x) is depended on u(x).

Example 2.7. If α > 0 and u(x) = αxβ , then

Dp[f(u(x))] =
f(αxpβ)− f(αxβ)

xp − x

=
f(αxpβ)− f(αxβ)

αxpβ − αxβ
· αx

pβ − αxβ

xp − x
= D ln(α) + pβ ln(x)

ln(u(x))

f(u(x))Dpu(x),

because, u(x)

ln(α) + pβ ln(x)

ln(u(x)) = αxpβ .

Example 2.8. If α > 0 and u(x) = αex, then

Dp[f(u(x))] =
f(αex

p

)− f(αex)

xp − x

=
f(αex

p

)− f(αex)

αexp − αex
· αe

xp − αex

xp − x
= D ln(α) + xp

ln(u(x))

f(u(x))Dpu(x),
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18 A. Neamaty, M. Tourani

because, u(x)

ln(α) + xp

ln(u(x)) = αex
p

.

3 p-Integral

The first thing that comes to our mind after studying the derivative of a function is its integral
topic. Before investigating it, let us define p-antiderivative of a function.

Definition 3.1. A function F (x) is a p-antiderivative of f(x) if DpF (x) = f(x). It is denoted by

F (x) =

∫
f(x)dpx.

Notice that as in ordinary calculus, the p-antiderivative of a function might not be unique. We
can prove the uniqueness by some restrictions on the p-antiderivative and on p.

Theorem 3.2. Suppose 0 < p < 1. Then, up to adding a constant, any function f(x) has at most
one p-antiderivative that is continuous at x = 1.

Proof. Suppose F1 and F2 are two p-antiderivative of f(x) that are continuous at x = 1. Let
Φ(x) = F1(x) − F2(x). Since F1 and F2 are continuous at x = 1 and also by the definition of
p-derivative that lead to DpΦ(x) = 0, we have Φ is continuous at x = 1 and Φ(xp) = Φ(x) for

any x. Since for some sufficiently large N > 0, Φ(xp
N

) = Φ(xp
N+1

) = ... = Φ(x) and also by the
continuity Φ at x = 1, it follows that Φ(x) = Φ(1). �

As was mentioned we denote the p-antiderivative of f(x) by function F (x) such that DpF (x) =
f(x). Here we’re going to construct the p-antiderivative. For this purpose, we use of an operator.
We define an operator M̂p, by M̂p(F (x)) = F (xp). Then we have:

1

xp − x
(M̂p − 1)F (x) =

F (xp)− F (x)

xp − x
= DpF (x) = f(x).

Since M̂ j
p (F (x)) = F (xp

j

) for j ∈ {0, 1, 2, 3, ...} and also by the geometric series expansion, we
formally have

F (x) =
1

1− M̂p

((x− xp)f(x)) =
∞∑
j=0

M̂ j
p ((x− xp)f(x)) =

∞∑
j=0

(xp
j

− xp
j+1

)f(xp
j

). (3.1)

It is worth mentioning that we say that (3.1) is formal because the series does not always
converge.

Definition 3.3. The p-integral of f(x) is defined to be the series

∞∑
j=0

(xp
j

− xp
j+1

)f(xp
j

). (3.2)

Remark 3.4. Generally, the p-integral does not always converge to a p-antiderivative. Here we
want to give a sufficient condition for convergence the p-integral to a p-antiderivative.
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The presentation of a new type of quantum calculus 19

Theorem 3.5. Suppose 0 < p < 1. If |f(x)xα| is bounded on the interval (0, A] for some 0 ≤ α < 1,
then the p-integral defined by (3.2) converges to a functionH(x) on (0, A], which is a p-antiderivative
of f(x). Moreover, H(x) is continuous at x = 1 with H(1) = 0.

Proof. We consider the following two cases.

Case 1. x ∈ (1, A]. Suppose | f(x)xα |< M on (1, A]. For any 1 < x ≤ A, j ≥ 0

| f(xp
j

) |< M(xp
j

)−α < M.

Thus, for any 1 < x ≤ A, we have

| (xp
j

− xp
j+1

)f(xp
j

) |≤ (xp
j

− xp
j+1

)M.

Since
∞∑
j=0

(xp
j

− xp
j+1

)M = M(x− 1),

thus, it follows from the comparison test that the p-integral converges to a function F (x). It follows
directly from (3.1) that F (1) = 0. We want now to prove that F (x) is a p-antiderivative of f(x),
but before of it let us show F is right continuous at x = 1. For 1 < x ≤ A,

| F (x) |=|
∞∑
j=0

(xp
j

− xp
j+1

)f(xp
j

) |≤M(x− 1),

which approaches 0 as x→ 1+. Since F (1) = 0, thus F is right continuous at x = 1. To prove that
F (x) is a p-antiderivative, it is sufficient to p-differentiate it:

DpF (x) =
F (xp)− F (x)

xp − x

=

∑∞
j=0(xp

j+1 − xpj+2

)f(xp
j+1

)−
∑∞
j=0(xp

j − xpj+1

)f(xp
j

)

xp − x
= f(x).

Case 2. x ∈ (0, 1). Suppose | f(x)xα |< M on (0, 1). For any 0 < x < 1, j ≥ 0

| f(xp
j

) |< M(xp
j

)−α ≤Mx−α.

Thus, for any 0 < x < 1, we have

| (xp
j

− xp
j+1

)f(xp
j

) |≤ (xp
j+1

− xp
j

)Mx−α,

and since
∞∑
j=0

(xp
j+1

− xp
j

)Mx−α = Mx−α(1− x),
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20 A. Neamaty, M. Tourani

hence, it follows from the comparison test that the p-integral converges to a function G(x) and by
(3.1) we have G(1) = 0. Similar to proof of case 1, it is easy to verify that G is left continuous at
x = 1 and is also a p-antiderivative of f(x). We now define

H(x) = G(x)χ(0,1)(x) + F (x)χ(1,A](x).

It is easy to see p-integral converges to H(x) on (0, A] and also H(x) is a p-antiderivative of f(x)
on (0, 1) ∪ (1, A] and is continuous at x = 1 with H(1) = 0. If f(x) is continuous in x = 1, then
DpH(1) = lim

x→1
DpH(x) = f(1) and it concludes that H(x) is a p-antiderivative of f(x) on (0, A],

hence the proof is complete. �

Corollary 3.6. If the assumption of Theorem 3.5 is satisfied, then by Theorem 3.2, the p-integral
gives the unique p-antiderivative that is continuous at x = 1, up to adding a constant.

Example 3.7. Let 0 < p < 1 and f(x) = c, i.e., f(x) is constant. Since for 0 ≤ α < 1, | f(x)xα |
is bounded on interval (0, A], hence by Theorem 3.5, p-integral of f(x) converges whose it is valid,
because

∞∑
j=0

(xp
j

− xp
j+1

)f(xp
j

) = c
∞∑
j=0

(xp
j

− xp
j+1

) = c(x− 1)χ(0,A](x).

Example 3.8. Let 0 < p < 1 and f(x) = 1
x−xp . The p-integral gives

∞∑
j=0

(xp
j

− xp
j+1

)f(xp
j

) =
∞∑
j=0

(xp
j

− xp
j+1

)
1

xpj − xpj+1 =∞,

and also f(x)xα is not bounded on (0, 1) ∪ (1, A] and 0 ≤ α < 1.

4 Definite p-Integral

We now are in position to define the definite p-integral. Generally, one of the principle tools to
define the definite p-integral of a function is use of a partition on a set. we will use of it to achieve
our goal. As proof of the Theorem 3.5, we consider the following three cases. Then, the definite
p-integral related to each case is given.

Case 1. Let 1 < a < b where a, b ∈ R+, p ∈ (0, 1) and function f is defined on (1, b]. No-

tice that for any j ∈ {0, 1, 2, 3, ...}, bpj ∈ (1, b]. We now define the definite p-integral of f(x) on
interval (1, b].

Definition 4.1. The definite p-integral of f(x) on the interval (1, b] is defined as∫ b

1

f(x)dpx = lim
N→∞

N∑
j=0

(bp
j

− bp
j+1

)f(bp
j

) =
∞∑
j=0

(bp
j

− bp
j+1

)f(bp
j

), (4.1)

and ∫ b

a

f(x)dpx =

∫ b

1

f(x)dpx−
∫ a

1

f(x)dpx. (4.2)
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The presentation of a new type of quantum calculus 21

Note 4.2. Geometrically, the integral in (4.1) corresponds to the area of the union of an infinite
number of rectangles. On [1 + ε, b], where ε is a small positive number, the sum consists of finitely
many terms, and is a Riemann sum. Therefore, as p → 1, the norm of partition approaches zero,
and the sum tends to the Riemann integral on [1 + ε, b]. Since ε is arbitrary, provided that f(x) is
continuous in the interval [1, b], thus we have

lim
p→1

∫ b

1

f(x)dpx =

∫ b

1

f(x)dx.

Example 4.3. Let b = 3 and f(x) = c where c is constant.∫ 3

1

cdpx = lim
N→∞

N∑
j=0

(3p
j

− 3p
j+1

)f(3p
j

)

= c lim
N→∞

[(3− 3p) + (3p − 3p
2

) + (3p
2

− 3p
3

) + ...+ (3p
N

− 3p
N+1

)]

= c lim
N→∞

[3− 3p
N+1

] = c(3− 1) = 2c,

and if a = 2, ∫ 3

2

cdpx =

∫ 3

1

cdpx−
∫ 2

1

cdpx = 2c− c = c.

Example 4.4. Let b = 2 and f(x) =
ln(x)

x− xp
.

∫ 2

1

f(x)dpx =
∞∑
j=0

(2p
j

− 2p
j+1

)
ln(2p

j

)

2pj − 2pj+1 =
∞∑
j=0

pj ln(2) =
ln(2)

1− p
.

Case 2. Let 0 < a < b < 1 and p ∈ (0, 1). It should be noted that for any j ∈ {0, 1, 2, 3, ...},
bp

j ∈ [b, 1) and bp
j

< bp
j+1

. We will define the definite p-integral of f(x) on interval [b, 1) as follows.

Definition 4.5. The definite p-integral of f(x) on the interval [b, 1) is defined as∫ 1

b

f(x)dpx = lim
N→∞

N∑
j=0

(bp
j+1

− bp
j

)f(bp
j

) =
∞∑
j=0

(bp
j+1

− bp
j

)f(bp
j

).

Example 4.6. Let b = 1
2 and f(x) = c∫ 1

1
2

cdpx = lim
N→∞

N∑
j=0

((
1

2
)p

j+1

− (
1

2
)p

j

)c

= c lim
N→∞

[((
1

2
)p − (

1

2
)) + ((

1

2
)p

2

− (
1

2
)p) + ((

1

2
)p

3

− (
1

2
)p

2

) + ...+ ((
1

2
)p

N+1

− (
1

2
)p

N

)]

= c lim
N→∞

[−1

2
+ (

1

2
)p

N+1

] = c(−1

2
+ 1) =

1

2
c.
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22 A. Neamaty, M. Tourani

Note 4.7. The above two definite p-integrals are also denoted by∫ b

1

f(x)dpx = Ip+f(b),∫ 1

b

f(x)dpx = Ip−f(b).

Case 3. Let 0 < a < b < 1 and p ∈ (0, 1). Then for any j ∈ {0, 1, 2, 3, ...}, bp−j ∈ (0, b] and

bp
−j−1

< bp
−j

. Let us state the definite p-integral of f(x) on interval (0, b].

Definition 4.8. The definite p-integral of f(x) on the interval (0, b] is defined as

Ipf(b) =

∫ b

0

f(x)dpx = lim
N→∞

N∑
j=0

(bp
−j

− bp
−j−1

)f(bp
−j−1

) =
∞∑
j=0

(bp
−j

− bp
−j−1

)f(bp
−j−1

),(4.3)

and ∫ b

a

f(x)dpx =

∫ b

0

f(x)dpx−
∫ a

0

f(x)dpx. (4.4)

Example 4.9. Let a = 1
4 , b = 1

2 and f(x) = c.

∫ 1
2

0

cdpx = lim
N→∞

N∑
j=0

((
1

2
)p

−j

− (
1

2
)p

−j−1

)c

= c lim
N→∞

[((
1

2
)− (

1

2
)p

−1

) + ((
1

2
)p

−1

− (
1

2
)p

−2

) + ...+ ((
1

2
)p

−N

− (
1

2
)p

−N−1

)]

= c lim
N→∞

[(
1

2
)− (

1

2
)p

−N−1

] =
1

2
c.

Similarly, ∫ 1
4

0

cdpx =
1

4
c,

thus we have ∫ 1
2

1
4

cdpx =

∫ 1
2

0

cdpx−
∫ 1

4

0

cdpx =
1

4
c.

Note 4.10. We can also apply Note 4.2 for the p-integrals defined in the cases 2 and 3 on the
intervals [b, 1− ε] and [ε, b] respectively, and by it define the Riemann integral.

Definition 4.11. Suppose 0 ≤ a < 1 < b. Then by Note 4.2 and Note 4.10, we have∫ b

a

f(x)dpx =

∫ 1

a

f(x)dpx+

∫ b

1

f(x)dpx.

Corollary 4.12. By the definitions of p-integrals, we derive a more general formula:
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The presentation of a new type of quantum calculus 23

i) If b > 1, ∫ b

1

f(x)dpg(x) =
∞∑
j=0

f(bp
j

)(g(bp
j

)− g(bp
j+1

)).

ii) If 0 < b < 1, ∫ b

0

f(x)dpg(x) =
∞∑
j=0

f(bp
−j−1

)(g(bp
−j

)− g(bp
−j−1

)).

Because, ∫ b

1

f(x)Dpg(x)dpx =

∞∑
j=0

(bp
j

− bp
j+1

)(f(bp
j

)Dpg(bp
j

))

=
∞∑
j=0

(bp
j

− bp
j+1

)f(bp
j

)(
g(bp

j+1

)− g(bp
j

)

bpj+1 − bpj
)

=
∞∑
j=0

f(bp
j

)(g(bp
j

)− g(bp
j+1

)).

Since Dpg(x) =
dpg(x)

dpx
, hence we have

∫ b

1

f(x)dpg(x) =
∞∑
j=0

f(bp
j

)(g(bp
j

)− g(bp
j+1

)).

Similarly, it is easy to prove (b).

Definition 4.13. The p-integral of higher order of function f is given by

(I0pf)(x) = f(x), (Inp f)(x) = Ip(I
n−1
p f)(x), n ∈ N.

5 Improper p-Integral

In this section we want to define the improper p-integral of f(x) and also give a sufficient condition
for its convergence. We start this section by computing the following p-integral.

Let p ∈ (0, 1), thus p−1 > 1 and consider p−1 = b. For any j ∈ {0,±1,±2, ...}, we have bp
j

> 1,

bp
j+1

< bp
j

and thus according to (4.2), we obtain

∫ bp
j

bp
j+1

f(x)dpx =

∫ bp
j

1

f(x)dpx−
∫ bp

j+1

1

f(x)dpx

=
∞∑
k=0

((bp
j

)p
k

− (bp
j

)p
k+1

)f((bp
j

)p
k

)−
∞∑
k=0

((bp
j+1

)p
k

− (bp
j+1

)p
k+1

)f((bp
j+1

)p
k

)

=
∞∑
k=0

(bp
k+j

− bp
k+j+1

)f(bp
k+j

)−
∞∑
k=0

(bp
k+j+1

− bp
k+j+2

)f(bp
k+j+1

),

Unauthenticated
Download Date | 2/28/18 8:01 AM



24 A. Neamaty, M. Tourani

and thus,

∫ bp
j

bp
j+1

f(x)dpx = (bp
j

− bp
j+1

)f(bp
j

).

We now define the improper p-integral as follows.

Definition 5.1. Let p ∈ (0, 1) and p−1 = b. The improper p-integral of f(x) on [1,+∞) is defined
to be∫ ∞

1

f(x)dpx =
∞∑

j=−∞

∫ bp
j

bp
j+1

f(x)dpx =
∞∑

j=−∞
(bp

j

− bp
j+1

)f(bp
j

)

=
∞∑
j=0

(bp
j

− bp
j+1

)f(bp
j

) +
∞∑
j=1

(bp
−j

− bp
−j+1

)f(bp
−j

).

Definition 5.2. If p ∈ (0, 1), then for any j ∈ {0,±1,±2, ...}, we have pp
j ∈ (0, 1), pp

j

< pp
j+1

and∫ 1

0

f(x)dpx =
∞∑

j=−∞
(pp

j+1

− pp
j

)f(pp
j

).

Because, according to (4.4)

∫ pp
j+1

pp
j

f(x)dpx =

∫ pp
j+1

0

f(x)dpx−
∫ pp

j

0

f(x)dpx = (pp
j+1

− pp
j

)f(pp
j

).

Hence, ∫ 1

0

f(x)dpx =
∞∑

j=−∞

∫ pp
j+1

pp
j

f(x)dpx =
∞∑

j=−∞
(pp

j+1

− pp
j

)f(pp
j

).

Definition 5.3. Let p ∈ (0, 1). Then the improper p-integral of f(x) on [0,∞] is defined to be∫ ∞
0

f(x)dpx =

∫ 1

0

f(x)dpx+

∫ ∞
1

f(x)dpx.

Definition 5.4. Let p ∈ (0, 1). Then the improper p-integral of f(x) on [a,∞] is defined as follows:

i) If 0 < a < 1, then ∫ ∞
a

f(x)dpx =

∫ 1

a

f(x)dpx+

∫ ∞
1

f(x)dpx.

ii) If a > 1, then ∫ ∞
a

f(x)dpx = lim
N→∞

N∑
j=1

∫ ap
−j

ap
−j+1

f(x)dpx.
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Here we give a sufficient condition for convergence the improper p-integral.

Proposition 5.5. Let p ∈ (0, 1), 0 < r < ∞ and ε is a small positive number. Assume that
inequality

| f(x) |< min{rx−α, | x− xp |−1 (lnx)2α}

holds in neighborhood of x = 1 with some 0 ≤ α < 1 and for sufficiently large x with some
−ε ≤ α < 0. Then, the improper p-integral of f(x) converges on [1,∞).

Proof. Consider b = p−1. According to Definition 5.1, we have∫ ∞
1

f(x)dpx =

∞∑
j=0

(bp
j

− bp
j+1

)f(bp
j

) +

∞∑
j=1

(bp
−j

− bp
−j+1

)f(bp
−j

).

By the assumptions and also Theorem 3.5, the convergence of the first sum is proved. For large x,
we have | f(x) |<| x− xp |−1 (lnx)2α where −ε ≤ α < 0. Then, we have for sufficiently large j,

| f(bp
−j

) |< (bp
−j

− bp
−j+1

)−1(ln bp
−j

)2α.

Hence

| (bp
−j

− bp
−j+1

)f(bp
−j

) | ≤ (bp
−j

− bp
−j+1

)(bp
−j

− bp
−j+1

)−1(ln bp
−j

)2α

= (ln bp
−j

)2α = (p−j ln b)2α = (ln b)2α(p−2α)j .

Therefore, by the comparison test, the second sum also converges. �

6 Fundamental Theorem of p-Calculus

Since we are familiar with the concepts of p-derivative and p-integral, so we’re going to study the
relation between them as follows. We begin this section with the following lemma.

Lemma 6.1. If x > 1 and p ∈ (0, 1), then DpIp+f(x) = f(x), and also if function f is continuous
at x = 1, then we have Ip+Dpf(x) = f(x)− f(1).

Proof. According to definitions of p-derivative and p-integral, we have

Ip+f(x) =

∫ x

1

f(s)dps =

∞∑
j=0

(xp
j

− xp
j+1

)f(xp
j

).

Hence

DpIp+f(x) =
Ip+f(xp)− Ip+f(x)

xp − x

=

∑∞
j=0(xp

j+1 − xpj+2

)f(xp
j+1

)−
∑∞
j=0(xp

j − xpj+1

)f(xp
j

)

xp − x

=
[(xp − xp2)f(xp) + (xp

2 − xp3)f(xp
2

) + ...]− [(x− xp)f(x) + (xp − xp2)f(xp) + ...]

xp − x

=
(xp − x)f(x)

xp − x
= f(x).
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Also

Ip+Dpf(x) = lim
N→∞

N∑
j=0

(xp
j

− xp
j+1

)Dpf(xp
j

)

= lim
N→∞

N∑
j=0

(xp
j

− xp
j+1

)(
f(xp

j+1

)− f(xp
j

)

xpj+1 − xpj
)

= lim
N→∞

N∑
j=0

(f(xp
j

)− f(xp
j+1

))

= lim
N→∞

(f(x)− f(xp
N+1

)) = f(x)− f(1). �

The last equality is true because f is continuous at x = 1. Similarly, it is easy to obtain the
following lemmas.

Lemma 6.2. If x, p ∈ (0, 1), then DpIp−f(x) = −f(x), and also if function f is continuous at
x = 1, then we have Ip−Dpf(x) = f(1)− f(x).

Lemma 6.3. If x, p ∈ (0, 1) and Ipf(x) =
∫ x
0
f(s)dps, then DpIpf(x) = f(x) and also if function

f is continuous at x = 0, then we have IpDpf(x) = f(x)− f(0).

We are now in a position to express fundamental theorem for p-calculus.

Theorem 6.4. (Fundamental theorem of p-calculus) Let p ∈ (0, 1). If F (x) is an antideriva-
tive of f(x) and F (x) is continuous at x = 0 and x = 1, then for every 0 ≤ a < b ≤ ∞, we
have ∫ b

a

f(x)dpx = F (b)− F (a). (6.1)

Proof. We consider the following cases.

Case 1. Let 1 < a < b and a,b are finite. Since F (x) is an antiderivative of f(x), hence
DpF (x) = f(x). By Lemma 6.1, we have

F (x)− F (1) = Ip+f(x) =

∫ x

1

f(s)dps,

which implies, ∫ a

1

f(s)dps = F (a)− F (1),

∫ b

1

f(s)dps = F (b)− F (1).

Using (4.2), thus we have ∫ b

a

f(x)dpx = F (b)− F (a).
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Case 2. Let 0 ≤ a < b < 1. Since DpF (x) = f(x), by Lemma 6.3, we have

F (x)− F (0) = Ipf(x) =

∫ x

0

f(s)dps,

which implies, ∫ a

0

f(s)dps = F (a)− F (0),

∫ b

0

f(s)dps = F (b)− F (0).

Using (4.4), thus we have ∫ b

a

f(x)dpx = F (b)− F (a).

Case 3. Let 0 < a < 1 < b and b is finite. According to Note 4.11 and also by Lemma 6.2, we have∫ 1

a

f(x)dpx = Ip−f(a) = Ip−DpF (a) = F (1)− F (a).

Similarly, ∫ b

1

f(x)dpx = Ip+f(b) = Ip+DpF (b) = F (b)− F (1).

Thus ∫ b

a

f(x)dpx = F (b)− F (a).

For b = +∞, without loss of generality, we consider a > 1 and by the Definition 5.4, we have

∫ +∞

a

f(x)dpx = lim
N→∞

N∑
j=1

∫ ap
−j

ap
−j+1

f(x)dpx

= lim
N→∞

N∑
j=1

(F (ap
−j

)− F (ap
−j+1

))

= lim
N→∞

(F (ap
−N

)− F (a)),

and if limx→∞ F (x) exists, so (6.1) is true for b =∞. �

Corollary 6.5. If f(x) is continuous at x = 0 and x = 1, then we have∫ b

a

Dpf(x)dpx = f(b)− f(a).

Corollary 6.6. If f(x) and g(x) are continuous at x = 0 and x = 1, then we have∫ b

a

f(x)dpg(x) = f(b)g(b)− f(a)g(a)−
∫ b

a

g(xp)dpf(x).
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Proof. Using the product rule (2.1), we have∫ b

a

Dp(fg)(x)dpx =

∫ b

a

(f(x)Dpg(x) + g(xp)Dpf(x))dpx.

By Corollary 6.5, we have

f(b)g(b)− f(a)g(a) =

∫ b

a

f(x)Dpg(x)dpx+

∫ b

a

g(xp)Dpf(x)dpx.

Since, Dpg(x)dpx = dpg(x), thus∫ b

a

f(x)dpg(x) = f(b)g(b)− f(a)g(a)−
∫ b

a

g(xp)dpf(x). �
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